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Decoding 2D-PAGE complex maps: Relevance to proteomics�
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Abstract

This review describes two mathematical approaches useful for decoding the complex signal of 2D-PAGE maps of protein mixtures. These
methods are helpful for interpreting the large amount of data of each 2D-PAGE map by extracting all the analytical information hidden therein by
spot overlapping. Here the basic theory and application to 2D-PAGE maps are reviewed: the means for extracting information from the experimental
data and their relevance to proteomics are discussed. One method is based on the quantitative theory of statistical model of peak overlapping (SMO)
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sing the spot experimental data (intensity and spatial coordinates). The second method is based on the study of the 2D-autocovariance function
2D-ACVF) computed on the experimental digitised map. They are two independent methods that are able to extract equal and complementary
nformation from the 2D-PAGE map. Both methods permit to obtain fundamental information on the sample complexity and the separation
erformance and to single out ordered patterns present in spot positions: the availability of two independent procedures to compute the same
eparation parameters is a powerful tool to estimate the reliability of the obtained results. The SMO procedure is an unique tool to quantitatively
stimate the degree of spot overlapping present in the map, while the 2D-ACVF method is particularly powerful in simply singling out the presence
f order in the spot position from the complexity of the whole 2D map, i.e., spot trains. The procedures were validated by extensive numerical
omputation on computer-generated maps describing experimental 2D-PAGE gels of protein mixtures. Their applicability to real samples was
ested on reference maps obtained from literature sources. The review describes the most relevant information for proteomics: sample complexity,
eparation performance, overlapping extent, identification of spot trains related to post-translational modifications (PTMs).

2006 Elsevier B.V. All rights reserved.
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. Introduction

The main goal of proteomics is a comprehensive identifica-
ion and quantification of every protein present in a complex
iological sample: 2D-gel electrophoresis (2D-GE) is the clas-
ical and principal tool for protein separation prior to mass
pectrometry (MS) [1–4]. While MS has developed into a rapid
igh-sensitivity method for identifying proteins [5,6], a com-

Abbreviations: IM, interdistance model; AM, abundance model; SMO,
tatistical model of peak overlapping; SC, single component; 2D-ACVF, 2D-
utocovariance function; 2D-EACVF, experimental 2D-ACVF; 2D-TACVF,
heoretical 2D-ACVF; SDO, statistical degree of overlapping
� This paper was presented at the 2nd IPSo Congress on Proteomics and
enomics, Viterbo, Italy, 29 May to 1 June 2005.
∗ Corresponding author. Fax: +39 0532240709.

E-mail address: mpc@unife.it (M.C. Pietrogrande).

plete separation of proteins prior to MS in a high-throughput
manner, that would allow analysis of an entire intact proteome,
is still far from being achieved [7,8].

The major advantage of 2D-PAGE is that it enables the simul-
taneous separation of thousands of unknown proteins, first by
charge using isoelectric focusing (IEF) and then by size using
SDS–polyacrylamide gel electrophoresis. Each cell or biological
fluid has a rich protein content that can be formed by thousands
of proteins present in a wide range of relative abundance and
displaying great differences in structure and size. As a conse-
quence, a comprehensive separation of all the proteins – each
spot is pure, i.e., formed by one pure single component (SC)
protein – is not achieved in 2D-PAGE maps. The common con-
dition is a very complex separation pattern in 2D gels, where a
single spot can be composed of two or more proteins [2,9]. It
must be noted that protein separation is the first stage in pro-
tein profiling, prior to mass spectral analysis: the presence of a
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single or a low number of proteins in a spot to be introduced
in the mass spectrometer, increases the reliability and sensitiv-
ity of the MS measurement for protein structure identification
[4,5].

Moreover, the explosion in proteomics research over recent
years has brought with it a very large amount of information
generated. An efficient use of the large amount of data produced
by each analytical run requires a powerful and user-friendly data
analysis by means of computer algorithms [10–20]. An exhaus-
tive interpretation of the plethora of data obtained from each
analytical run is still far from being achieved, despite some
impressive robotic and chemical technologies introduced by
several companies as well as new algorithms for spot detec-
tion, comparison, quantification, and statistical analysis of the
map data [13–15,19,20]. Therefore, any effort in this direction
is very helpful in order to extract information from such com-
plicated separations and solve the complexity of the proteome
sample.

Many mathematical–statistical methods have been devel-
oped for handling data obtained from 2D-PAGE maps [10–21].
Among them, two chemometric procedures developed by the
authors are discussed in the present review [21–26]. Their pecu-
liarity lies in regarding the whole 2D signal as a statistical ensem-
ble whose properties can be estimated by using proper mathe-
matical functions. The following basic parameters, describing
the complexity of 2D-PAGE maps, can be extracted:
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to be focused if the experimental 2D-PAGE maps really ful-
fil this condition: the most common condition in protein maps
of living systems, is an uneven spot distribution with a high
number of proteins displaying spot overcrowding in the 4–6 pH
range of pI coordinates and 20–60 KDa for Mr values. More-
over, specific ordered retention structures (spot trains) can be
present, superimposed on, and hidden by, a random spot loca-
tion [2]. As an example, a map formed by experimental pI and
log Mr coordinates retrieved from the SWISS-2DPAGE database
[22] is reported in Fig. 1 . It was generated by using the coor-
dinates of 1956 identified spots in reference maps of human
tissues: the pI and log Mr values were projected into the sep-
aration axes and their probability distribution histograms were
computed [21]. The obtained distributions follow a Poissonian
density function as proved by a chi-square test applied to check
the goodness-of-fit (H0 hypothesis accepted at a significance
level of p = 0.05). Therefore, the spot positions in the 2D maps
result random variables with Poisson distributions, as combi-
nation of the two independent random variables with Poisson
distributions and the two SMO and 2D-EACVF models can be
properly applied [21,25].

Equal and complementary information can be extracted from
the 2D-PAGE map using the SMO and 2D-EACVF methods:
in particular the most relevant results for proteomics will be
discussed in the following.
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the sample complexity expressed by the number of proteins
present in the sample (single components, SCs), m;
the separation performance represented by the average spot
dimensions, σx and σy;
the separation pattern described by the function (interdistance
model, IM) representing the distribution of the spot position
(coordinates pI and Mr) in the map. In the 2D-PAGE maps such
a distribution can be ordered, disordered or a combination of
them.

The first method is the statistical model of peak overlap-
ing (SMO) model for a statistical quantification of the degree
f spot overlapping present in a map [21,23,24]. With this
odel, starting from the experimental map, information on the

umber of proteins present in the sample and on the separa-
ion pattern can be extracted. The second method is based on
he study of the 2D-autocovariance function (2D-ACVF) com-
uted on the experimental digitised map [25,26]. From it, the
omplexity of the mixture (number of components, separation
attern) and the separation performance can be estimated. More-
ver, the study of the 2D-EACVF plot allows one to identify
rdered separation patterns of SC spots, which can be related
o specific protein structures. The methods have been previ-
usly developed by some of the authors for mono-dimensional
hromatograms [27–42] and subsequently extended to 2D sep-
rations [21,23–26].

The basic assumption of both the SMO and 2D-EACVF mod-
ls is that the SC spots locate randomly in the 2D-PAGE map,
.e., spots position along the two separation axes are indepen-
ent random variables with Poisson distributions. Attention has
.1. Estimation of the map properties

Estimation of the map properties can be estimated by eval-
ating the sample complexity, m, and the system performance,
x and σy.

The number of proteins present in the sample is usually higher
han the number of detectable spots, as a consequence of the
trong spot overlapping [7–9]. A comparison between the values
btained by the two independent SMO and 2D-EACVF proce-
ures is a check of the result reliability. The estimation of σx

nd σy values is a powerful tool for selecting proper experi-
ental conditions, i.e., gel structure, immobilized pH gradient,

o optimise system performance [2]. Moreover, high σx and σy

alues may be diagnostic for overloading effects revealing that
sample excess has been loaded on the gel [39].

.2. Estimation of spot overlapping degree

The original statistical degree of peak overlapping (SDO)
pproach developed by Davis [43–47] allows one to statistically
stimate the number of spots formed by one, two, three etc. pro-
eins, i.e., the number of singlets, doublets, triplets etc. present
n the map [23]. It requires the knowledge of the m values as esti-

ated from the SMO and 2D-EACVF methods. The common
ituation – a tissue homogenate under normal sample loading
ca. 1 mg total protein) and standard gel sizes (18 cm × 20 cm,
EF × SDS–PAGE) – is an overcrowded condition, where the
inglets would be the least abundant species. For example, it is
ossible to estimate that in the case of 1500 proteins loaded,
he singlets would be only 27%; for a total of 3000 polypeptide
hains, the singlets would amount only to 14% [23].
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Fig. 1. A computer generated map using 1956 pI and log Mr coordinates retrieved from the SWISS-2DPAGE database [22]. The histograms of the spot locations
projected into the pI and log Mr axes are reported: Nj represents the number of protein spots belonging to each class.

1.3. Identification of ordered structures

Ordered sequences of spots can be identified in the com-
plex map by using both the SMO and 2D-EACVF approaches,
the last method being particularly helpful in singling them out
from the whole complexity of the 2D separation. An example of
ordered sequences may be the spot trains consistent with pro-
tein isoforms differing in a constant variation of the number
of ionogenic groups in the molecule. These protein isoforms
suggest the presence of co- and post-translational modifications
(PTMs) such as glycosylation, phosphorylation, deamidation
[1–4,47–55]. Identification of protein post-translational modi-
fications is quite an important aspect of proteomics, since it has
been well established that PTMs occur on almost all proteins
and are of extreme biological importance, i.e., they can regulate
a variety of protein activities, such as enzymatic activity, ability
to interact with other proteins, sub cellular localization, targeted
degradation, etc. [1,47–55].

2. Computation

All the programs are written in Fortran [56] and run on a
personal computer Pentium III 2Ghz (512 MB RAM) AMD
Athlon.

The statistical methods were validated on 2D maps with pre-
cisely known properties by comparing the results obtained with
t
w

ered as a point described by two position coordinates (pI and Mr
of the barycentre of the spot) and by a third coordinate describ-
ing spot intensity. Different distribution functions were used to
generate the position coordinates pI and Mr (IM) and the spot
intensity distribution (abundance model, AM). Different com-
binations of IM and AM yield three different map types.

The most general maps were simulated in the simplest model
where the pI and Mr coordinates follow a random-Poissonian
distribution and the spot intensity distribution is described by
uniform (U) or exponential (E) functions (AM = U or E).

Synthetic 2D maps were generated to describe real 2D-PAGE
maps [21]. The rejection algorithm [56] was applied for inde-
pendently generating the pI and Mr coordinates which follow the
same position distribution present in experimental maps: such
a distribution was computed from the pI and Mr coordinates
of 1956 identified spots in reference maps of human tissues
(SWISS-2DPAGE database, [22]). Spot intensity values were
generated according to an exponential distribution, since it has
been demonstrated to be the most probable for a high number
of components [7].

Reference 2D maps were build up from the experimental
reference maps of human tissues using the pI and Mr values
of identified spots retrieved from SWISS-2DPAGE database
[22,57–62]. In these maps the spot intensity distribution is
described by an exponential function (AM = E).

For each generated map, 50 runs were performed using differ-
e
a

he original map properties [21,25]. For this purpose, 2D maps
ere generated by computer calculations: each spot is consid-
nt random sequences and the reported results (Tables 1 and 2)
re the mean values.
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Table 1
Results of the SMO method applied to computer generated and experimental
maps [21]

m Strip number mest ± √
mest ε% CV%

2000 40 1960 ± 44 2.0 1.7
2000 50 1940 ± 44 3.0 1.5
2000 27 (20) 1972 ± 44 1.4 1.5
2000 43 (10) 1994 ± 45 0.3 1.5
1000 20 1026 ± 32 2.6 2.2
1000 30 1012 ± 32 1.2 1.7
1000 31 (10) 1005 ± 32 0.5 1.7
1000 33 (15) 991 ± 31 0.9 1.5

500 10 509 ± 23 1.8 3.4
500 15 485 ± 22 3.0 2.7
500 9 (10) 511 ± 23 2.2 3.4
500 11 (20) 499 ± 22 0.3 2.3
108a 10 101 ± 10 5.6 2.0
108a 3 (20) 105 ± 10 2.8 1.9

Maps were divided into different number of strips (2nd column) along the pI
axis. m is the number of proteins, mest is the estimated value with the SMO
method. Different computation procedures were used: maps were divided into
different number of strips (2nd column) with variable or constant (in brackets)
number of proteins. Accuracy is expressed as relative error ε%; precision as
relative standard deviation CV% (50 runs).

a Reference map: colorectal adenocarcinoma cell line [59].

3. Results

3.1. Statistical model of peak overlapping (SMO)

The quantitative theory of SMO has been originally devel-
oped to study 1D chromatograms [27–29]. The extension of
the procedure to 2D separations implies the division of the 2D

map into many strips, considered as 1D separations, on which
computations are performed [21]. This approach is based on the
assumption that a complex separation can be considered as the
superimposition of many simpler separations: the properties of
the whole map can be determined by addition of the parameters
statistically estimated for each individual separation [21].

The SMO describes the complexity of a multicomponent sep-
aration in terms of two probability functions: the first is the
interdistance model, which describes the position of SC spots
in the separation surface, the second is the abundance model,
which represents the distribution of SC abundance (spot inten-
sity) [21,28,29]. The properties of the map are computed by
comparing these models to the observable parameters obtained
from the software output (i.e., pI and log Mr coordinates, inten-
sity for each spot).

The 2D map is divided into many strips by choosing 1 dimen-
sion (pI or log Mr). On each strip a critical interdistance value
x0 (the smallest distance by which the centers of two adjacent
non-overlapping spots can be separated) is selected and used
for counting the spots: if two or more spots fall inside the same
x0 interdistance, they will be counted as one spot formed by
two or more proteins. The average value computed from the
area of the counted spots, is the average observed peak area,
yobs. Choosing increasing x0 values (related to the required sep-
aration resolution), a decreasing number of spots is counted,
yielding increasing y values. Many (y ,x ) couples can be
o
d
s
t
t

Table 2
Results of the 2D-ACVF method applied to computer generated and experimental ma

AM m σx σy σ2
h
/a2

h

U 250 0.75 0.75 0.33
E 250 0.75 0.75 1
U 750 0.75 0.75 0.33
E 750 0.75 0.75 1
U 750 1.00 0.75 0.33
E 750 1.00 0.75 1
U 1500 0.75 0.75 0.33
E 200 0.025 0.0006 1
E 200 0.025 0.0006 1
E 200 0.016 0.0004 1
E 200 0.009 0.0002 1
E 200 0.008 0.0002 1
E 500 0.025 0.0006 1
E 500 0.016 0.0004 1
E 500 0.009 0.0002 1
E 750 0.009 0.0002 1
E
E
E
E
E
E

A hape (
t

750 0.008 0.0002 1
1000 0.009 0.0002 1
1000 0.008 0.0002 1
HEPG2 99 0.009 0.0002 1
DL-1 108 0.009 0.0002 1
PLASMA 626 0.009 0.0002 1

M: abundance distribution model [25,26]. Number of proteins (m) and spot s

he separation parameters estimated by the 2D-ACVF method.
obs obs 0
btained from the 2D map signal, with an experimental limit
ue to the instrumental minimum distance between two resolved
pots [28]. A theoretical expression has been derived to relate
he observed yobs and x0 values experimentally computed from
he map to the theoretical values m and the real mean intensity,

ps [25,26]

mest σx,est σy,est σ2
m/a2

m

243 ± 7 0.76 ± 0.01 0.75 ± 0.01 0.33 ± 0.03
241 ± 6 0.75 ± 0.01 0.75 ± 0.01 0.99 ± 0.11
723 ± 23 0.75 ± 0.01 0.75 ± 0.01 0.31 ± 0.02
700 ± 20 0.75 ± 0.01 0.75 ± 0.01 0.90 ± 0.08
716 ± 24 1.00 ± 0.02 0.76 ± 0.02 0.30 ± 0.02
684 ± 22 1.01 ± 0.02 0.75 ± 0.01 0.87 ± 0.08

1404 ± 40 0.76 ± 0.01 0.76 ± 0.01 0.28 ± 0.01
183 ± 13 0.025 0.0006 0.92
203 ± 14 0.026 0.0006 0.92
193 ± 14 0.016 0.0004 0.96
196 ± 14 0.009 0.0002 0.97
197 ± 14 0.008 0.0002 0.98
459 ± 21 0.025 0.005 0.92
479 ± 22 0.017 0.005 0.93
485 ± 22 0.009 0.002 0.97
710 ± 26 0.009 0.003 0.95
736 ± 27 0.008 0.002 0.96
919 ± 30 0.009 0.003 0.93
764 ± 31 0.008 0.002 0.96
100 ± 10 0.009 0.0002 0.99
104 ± 10 0.009 0.0002 0.99
601 ± 24 0.009 0.0002 0.97

σx,σy) are the values used for map computer simulation; mest, σx,est, σy,est are
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ȳ, which is the true mean peak intensity value corresponding to
well separated SC peaks. A linear relationship was obtained:

ln yobs = ln ȳ + m
x0

X
(1)

where X is the total separation length computed from the gel
dimension. The experimental values of the (yobs, x0) couples can
be fitted by a straight line, whose slope represents a statistical
estimation of m, the number of single components.

Eq. (1) is strictly true in the simplest and most general case,
where separation interdistances exhibit an Exponential distri-
bution. Any deviation from linearity in Eq. (1), may be related
to the specific feature of the experimental separation pattern. In
fact, a general relationship has been derived, showing that the 1st
derivative of the relationship between the quantity 1/yobs and the
critical interdistance x0 gives the function describing the inter-
distance distribution between subsequent spots, the IM [28]:

IM = −ȳ
d(1/yobs)

dx0
(2)

The SMO method was applied to numerically simulated and
experimental maps: the most relevant results are reviewed in
the following.

3.1.1. Estimation of the separation parameters and spot
overlapping degree
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Fig. 2. Accuracy of the m estimated values, expressed as relative error, ε%:
(a) SMO method: ε% as a function of the number of components, m, and the
number of strips. Black points: the map is divided into a fixed number of strips;
larger red points: the map is divided into a variable number of strips by fixing
the minimum number of spots present in each strip; (b) 2D-ACVF method: ε%
as a function of the number of components, m, and the relative error affecting
the σ2

h
/a2

h
estimation. Black points: the simplified 2D-ACVF method; larger

red points: the original 2D-ACVF method. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of the
article.)

sition of many ordered and disordered sequences, exhibits a
completely disordered separation pattern, which can be prop-
erly described by an exponential IM [21].

By using the estimated m value, the SDO procedure
[27,43–46] can be applied to statistically estimate the degree
of spot overlapping present in a 2D-PAGE map, i.e., the purity
extent of each spot can be evaluated as the percentage of spots
formed by one, two, three or more proteins [23]. This informa-
tion is useful for estimating the influence of different experimen-
tal conditions (strip dimension, detection system performance,
pI range) on spot overlapping. Computations were performed on
synthetic 2D maps describing experimental 2D-PAGE gels [23]:
the degree of error associated with identification and quantifica-
tion of each protein can be predicted and the best experimental
strategies can be set-up to reduce spot overlapping and achieve
the highest resolution in protein separation.
The SMO procedure was validated on numerically simulated
aps with known number of proteins describing real experi-
ental 2D-PAGE maps (results in Table 1) [21]. The number

f components is estimated for each 1D strip by using Eq. (1);
he values for each strip were added together to compute the
otal number of proteins (m in 3rd column). The maps were
ivided along the pI axis using two computation procedures: a
xed number of strips was selected or a variable number was
omputed by fixing the minimum number of proteins present
n each strip (values in brackets in 2nd column of Table 1). A
imple interpretation on the results can be visualized in a 3D
lot displaying the accuracy of the estimated results, expressed
s relative error ε%, as a function of the number of components
nd the number of strips (Fig. 2a). All the reported results show
correct estimation of m, within the accuracy of m estimation,

.e., ±√
m (compare 1st and 3rd columns in Table 1). The accu-

acy of the m estimation is particularly good (relative error ε%
ower than 3%) if the division procedure into variable number
f strips is used (larger red points in Fig. 2a), even if the number
f proteins present in the map is low.

The SMO procedure was applied for studying reference 2D
aps retrieved from the SWISS-2DPAGE database [22]. As

n example, the map of colorectal adenocarcinoma cell line
DLD1 HUMAN) [59] is reported in Fig. 3a . The SMO method
llows to estimate m with good precision and accuracy (last
wo rows in Table 1). Looking into the details of the colorectal
denocarcinoma map, we can see that some regions exhibit a ran-
om pattern, described by an exponential IM (disordered region,
nterdistance histogram in inset in Fig. 3a), while others show an
rder in spot position (ordered region, interdistance histogram
n inset in Fig. 3a). However, the whole map, i.e., superimpo-
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Fig. 3. Study of colorectal adenocarcinoma cell line map using the SMO method: (a) experimental 2D-PAGE map in a digitised form, showing ordered (top) and
disordered (bottom) regions. (insets) �pI interdistance distribution in the ordered and disordered regions and (b) histogram of �pI interdistance distribution in an
ordered region: real values (histogram) and the distribution (solid red line) estimated by using the plot reported in the inset (reprinted from [21], by permission). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

Recently, the SMO and SDO models were, for the first time,
applied to experimental 2D-PAGE maps: the reliability of the
obtained results was checked by comparing the estimated over-
lapping degree with the experimental MS data [24]. The studied
sample was a neuroblastoma xenograft implanted in mice, sub-
mitted to 2D-PAGE separation. By the MS analysis using a
quadrupole-TOF mass spectrometer 74 proteins were identi-
fied: 52 (71%) of them were found to be singlets, 14 (19%)

were doublets, 6 (8%) were triplets and 1 each were quadruplet
and quintuplet. The computation of the SMO and SDO pro-
cedures on the selected spots yielded the following results: 74
proteins formed 54 singlets, 14 doublets, 6 triplets, 1 quadruplet
and 1 quintuplet. The excellent agreement found between the-
oretical and experimental data proves that the SDO model is a
powerful and robust method to accurately predict the overlap-
ping degree present in a map. In the case studied the number of
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singlets would be in majority over the other spots (71%): this is
an exceptional situation in 2D separations, since only 264 total
spots were detectable in the map.

3.1.2. Identification of ordered structures
The SMO method is a powerful tool for identifying the pres-

ence of ordered structures in the spot positions, even if it might
escape detection since it is hidden in the spot overcrowding [21].
In the example of the colorectal adenocarcinoma cell line map
(Fig. 3a), the distribution of position interdistance along the pI
separation axis was computed in ordered and disordered regions
of the map (histograms in enlarged details in Fig. 3a). The pres-
ence of an ordered separation pattern can be visually detected
by a significant deviation from linearity of Eq. (1) character-
ized by an higher slope of the yobs versus x0 or 1/yobs versus x0
plots (insert in Fig. 3b). The same ordered structures can also
be identified and quantified by the presence of some maxima
in the distribution function estimated by using Eq. (2) (red line
in Fig. 3b): they correspond to the interdistance values repeated
in the map, e.g. 0.04 and 0.06 �pI values (Fig. 3b). The reli-
ability of the obtained results is shown by the good agreement
between the distribution histogram computed from the spot posi-
tion coordinates (histogram in Fig. 3b) or estimated by using Eq.
(2) (red line in Fig. 3b). It must be underlined that the Eq. (2)
makes it possible to detect the presence of ordered patterns in a
map, but not to give any information on the map region where
s
c
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to obtain the 2D-EACVF plot. An example of a map contain-
ing 50 SCs is reported in Fig. 4a ; 25 of them are randomly
distributed in the separation space, 25 SCs form five ordered
sequences of five spots. A 3D plot of the 2D-EACVF computed
on the map (Fig. 4a) is reported in Fig. 4b (the inset shows an
enlarged view of the region close to the origin 2D-EACVF(0,0)).
The 2D-EACVF represents intercorrelation between positions of
subsequent spots: if some constant interdistances are repeated in
different regions of the map, the 2D-EACVF corresponding to
the repeated interdistances assumes a value significantly higher
than 1 and the 2D-EACVF plot shows well defined determin-
istic cones (Fig. 4b). The study of the 2D-EACVF is based on
theoretical expressions of 2D-ACVF (2D-TACVF) as a function
of the separation parameters (quantities m, σx, σy and retention
pattern structure). Two limit examples of retention patterns are
discussed, since they are the basis for studying any experimental
2D separation [25]: a disordered separation (Poissonian reten-
tion pattern) and an ordered map containing ordered sequences
of spots. For both the cases, the SC spot shape is represented
by a bivariate Gaussian distribution described by the standard
deviation along the two separation axes, σx and σy: both circular
(σx = σy) and elliptical (σx �= σy) spots are assumed.

The Poissonian retention pattern describes a completely dis-
ordered separation where SC positions are uniform randomly
distributed over the X,Y area. The 2D-TACVF is given by [25]:
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uch patterns are present. Only a detailed analysis of the position
oordinates of each spot can give this information.

.2. Autocovariance function method

The method is based on the study of the 2D experimental
utocovariance function (2D-EACVF) computed on the experi-
ental map acquired in digitised form [25]. The digitised map

onsists of a gridded surface Nx × Ny, where all the nodes are
qually spaced; on it the 2D-EACVF is computed as:

D-EACVFk,l = 1

NxNy

Nx−k∑
i=1

Ny−l∑
j=1

(fi,j − f̄ )(fi+k,j+l − f̄ )

(3a)

= −Lmax,x, . . . ,−1, 0, 1, . . . , Lmax,x (3b)

= −Lmax,y, . . . ,−1, 0, 1, . . . , Lmax,y (3c)

here fi,j represents the map intensity at the point (i,j), f̄ is the
verage intensity calculated over all the sampled points, Lmax,x
nd Lmax,y are the maximum spans of the pI and log Mr values
ver which 2D-EACVF is calculated. A cyclic calculation pro-
edure was used (the beginning and the end of the separation
xes are merged by using negative k or l indices): in this way,
ach point of the 2D-EACVF is computed using the same num-
er of points and thus it is estimated with the same degree of
recision (see ref 36 for the details). Each point used for compu-
ation can be converted into �x = �pI and �y = �log Mr on the
asis of the sampling inderdistances between subsequent points
n the X- and Y-axes. The 2D-EACVF can be plotted versus
he k and l interdistance points along the two separation axes
D-TACVF(�x, �y) = V 2
T(σ2

h/a2
h + 1)

4πmσxσyXY
e

− (�x)2

4σ2
x

− (�y)2

4σ2
y (4)

here

T = 2πmahσxσy (4a)

s the total volume of the signal computed on the three coor-
inates (x, y, f); ah and σ2

h are, respectively, the mean and the
ariance of SC spot abundance.

An ordered pattern in a 2D-PAGE map is formed by SCs
isplaying ordered sequences of spots in the separation space:
he position of the nth term of the series is described by:

(n) = ax + bxn (5a)

(n) = ay + byn (5b)

here ax, ay, bx and by are constants. In this case, the 2D-TACVF
s expressed by:

2D-TACVF(�x, �y)

=
k=nmax∑

k=0

V 2
T

4σxσyπXY (nmax − k + 1)

(
σ2

h

a2
h

+ 1

)

× e−[(�x−bXk)2/4σ2
x ]−[(�y−bY k)2/4σ2

y ] (6)

here nmax is the highest value of n, i.e., the SC number of the
eries. Note that the ax, ay parameters are missing in this expres-
ion, since the ACVF expresses only the recursivity of an ordered
tructure [25]. According to Eq. (6), the 2D-TACVF plot, and
herefore the 2D-EACVF plot, shows well defined peaks located
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Fig. 4. Computation of the Experimental 2D-ACVF (2D-EACVF) on the experimental map and the resulting 2D-EACVF plot: (a) experimental map in the digitised
form and (b) 2D-EACVF plot vs. interdistance along the two separation axes; enlarged detail: 2D-EACVFplot for interdistances lower than 4σx and 4σy.

at interdistances kbx and kby, corresponding to repeated interdis-
tances among the terms of the SC series. These peaks are called
deterministic since they reflect the order of the sequence.

In addition to the original method based on non-linear fitting
of 2D-EACVF to 2D-TACVF [25], a simplified version of the
2D-ACVF method has been recently developed: it is based on a
graphic measurement of the two main regions of the 2D-EACVF
[26].

Short-term correlation (interdistance lower than 4σx and 4σy,
enlarged detail in inset in Fig. 4b). The first part of 2D-EACVF
– interdistance lower than 4σx and 4σy, short-term correlations
– resembles the mean spot size averaged on all the spots present
in the map: from its shape it is possible to estimate the mean
standard deviation, σx and σy, related to the separation perfor-
mance.

The simplified procedure, based on the first part of the 2D-
EACVF (interval ±4σ), is a general method, independent of
the specific features of the retention pattern [26]. When the 2D-

TACVF is computed at the origin, i.e., �pI = 0, �log Mr = 0, the
same expression – pre-exponential terms in Eqs. (4) and (6) – is
obtained for the Poisson case (Eq. (4)) as well as for the ordered
pattern (Eq. (6)) for k = 0 (m is substituted by (nmax + 1)). From
2D-EACVF(0,0) the number of proteins displaying a disordered,
m, or an ordered pattern, nmax, can be estimated. Some separa-
tion parameters in Eq. (4) and (6) are calculated by the developed
algorithm: the total volume of the separation, VT, was computed
by numerical integration. The true average SC abundance, a2

h,
its standard deviation σ2

h and the relative dispersion of the SC
abundance σ2

h/a2
h are not experimentally accessible parameters

because of SC spot overlapping and must be approximated by
their estimate, i.e., by the experimental values computed from
the observed spot maximums. An algorithm based on the com-
parison of seven successive points for each dimension was used
to detect the spot maxima. The area of each detected spot was
computed and from these values the average spot maximum
abundance, a2

m, its standard deviation,σ2
m, and the relative disper-
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sion ratio of the maxima, σ2
m/a2

m, were obtained and substituted
in Eqs. (4) and (6) in the place of the true theoretical value σ2

h/a2
h

[25].
The quantities σx, σy are obtained by a simple graphical

inspection of 2D-EACVF plot as:

σx = dx

1.665
(7a)

σy = dy

1.665
(7b)

where dx and dx are the half widths at half height of 2D-EACVF
plot along the separation directions x and y (see inset in Fig. 4b)
[26].

Long-term correlation (interdistance higher than 4σx and
4σy, Fig. 4b). This part contains information for detection and
characterization of ordered retention patterns present in the com-
plex map: the presence of deterministic peaks is diagnostic for
the existence of the sequences and their position is related to
its bx and by parameters (Eqs. (5a) and (5b)). This property is
due to two concomitant abilities of the 2D-ACVF: it cancels the
effect of the randomness of SC spot positions while it amplifies
the recursivity of the repeated interdistances, since it assumes
values significantly different from zero only for repeated spot
positions. Therefore, the visual inspection of the 2D-EACVF
plots or the analysis of the 2D-EACVF values make it possible to
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describing experimental 2D-PAGE gels were studied (8th–19th
rows in Table 2): the generated pI and Mr coordinates follow
the same position distribution present in experimental maps,
the elliptical spot shape represents experimental conditions, i.e.,
σx = 0.009 pH and σy = 0.0002 log Mr correspond to the stan-
dard case of a 18-cm strip of broad pH range (pH 3–7) with
standard (1 mm) scanner resolution [2,23]. The simplified 2D-
EACVF method [26], was used for these maps (results reported
in Table 2, 8th–19th rows).

With both the methods, the most critical parameter in Eqs. (4)
and (6) is the SC abundance dispersion ratio (σ2

h/a2
h, 5th column

in Table 2): in fact as a consequence of the SC spot overlapping,
it is not experimentally accessible and it must be approximated
by the maximum spot dispersion ratio computed on the map
(σ2

m/a2
m, 9th column). The relative error ε% computed in esti-

mating σ2
h/a2

h can be computed by comparing σ2
m/a2

m to σ2
h/a2

h

values. A simple interpretation of the results can be visualized
in a 3D plot displaying the accuracy of the estimated m val-
ues, expressed as relative error ε%, as a function of the number
of components and the ε% in estimating σ2

h/a2
h (Fig. 2b). The

obtained data show that the number of proteins, m, present in the
sample can be correctly estimated within a bias of 10%, using
both the original (larger red points in Fig. 2b) and the simplified
method (black points in Fig. 2b), also in the case of the most
overcrowded maps (compare 2nd and 6th columns in Table 2).
The results in the Table also show that the 2D-EACVF plot gives
a
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dentify the presence of ordered retention patterns singling them
ut from the random pattern of a complex 2D-PAGE map. This
ehavior is more simply and clearly shown by the intersection of
D-EACVF with the separation axes. Since the order (constant
nterdistance repetitiveness) may be related to constant changes
n the molecular structure of the proteins, the 2D-EACVF plot
an be regarded as a simplified comprehensive picture of the
ap, still retaining information on the chemical structure of

ompounds present in the mixture. If more precise and detailed
nformation on specific proteins is required, the 2D-EACVF can
e computed and analyzed for selected regions of the 2D map,
.e., those containing the proteins of interest.

The 2D-EACVF method was applied to numerically sim-
lated and experimental maps: the most relevant results are
eviewed in the following.

.2.1. Estimation of the separation parameters
The 2D-EACVF method was validated on computer-

enerated maps describing experimental 2D-PAGE maps (data
n Table 2) [25,26]. The 2D-bed dimensions (X and Y) refer
o standard 180 mm × 200 mm gel sizes; the spot shapes are
ssumed both circular (σx = σy = 0.75) and elliptical (σx �= σy)
3rd and 4th columns in Table 2); the number of proteins varies
rom m = 200 to 1500 (2nd column); spot abundance is described
y uniform (U) and exponential (E) distributions (1st column)
ielding σ2

h/a2
h = 0.3̄, and 1.0, respectively (5th column). The

esults presented in Table 2 were obtained from 50 repeated sim-
lations. The most general 2D separations, assuming Poissonian
istribution of spot position – exponential IM – were studied by
sing the original EACVF method [25]: the obtained results are
eported in the 1st–7th rows in Table 2. Some synthetic 2D maps
correct estimation of the mean spot shape for all the simulated
aps (σx and σy in 3rd–4th and 7th–8th columns).
Moreover, some reference 2D maps retrieved from the

WISS-2DPAGE database were studied with both the origi-
al and simplified methods [22]: a hepatoblastoma-derived cell
ine (HEPG2 HUMAN) [57,58], a colorectal adenocarcinoma
ell line (DL-1) (DLD1 HUMAN) [59] and a human plasma
PLASMA HUMAN) [60–62]. The values σx = 0.009 pH and
y = 0.0002 log Mr were assumed for spot dimension since they

epresent the standard case for experimental 2D-PAGE maps
2,23]. The results obtained (last rows in Table 2) show a correct
stimation of the separation parameters, m, σx and σy (compare
olumns 3-1 and columns 7–8 with columns 3–4), even if the
umber of proteins considered is low and the theoretical model
escribing the distribution of SC positions is far from being
horoughly known [26].

A comparison between the SMO and 2D-EACVF methods
n estimating the number of proteins, m, was performed on
he 2D-PAGE map of colorectal adenocarcinoma cell line (DL-
) [59]. The SMO method estimates the values m = 101 ± 10
nd m = 105 ± 10 (13th, 14th rows in Table 1), and the 2D-
ACVF procedure yields m = 104 ± 10 (21st row in Table 2).
he excellent agreement between the values obtained by the

wo independent procedures makes it possible to verify the reli-
bility of the results obtained.

.2.2. Identification of ordered structures
The great strength of the 2D-EACVF in identifying ordered

equences was tested in the case of spot trains. As an example,
pot trains showing a mono-dimensional shift parallel to the pI
xis are studied, since they represent a common feature in 2D
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Fig. 5. Identification of a train of spots by the 2D-EACVF method: (a) simulated map where a train of 8 spots in the pI range 5–6.4, with a constant �pI = 0.2 pH
and at a constant log Mr value of 0.67, was superimposed on a map containing 200 SCs (Table 2, row 9). Enlarged detail: selected 0.6–0.74 log Mr region of the map
containing the train of 8 spots and (b) plot of 2D-EACVF computed on the 2D map. (Inset) 2D-EACVF values over the pI separation axis: comparison between the
2D-EACVF plots computed on the map with (upper red line) and without the train of spots (lower blue line) (reprinted from [26], by permission). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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gels. They may be the consequence of proteins post-translational
modifications yielding a change in amino acid charges with a
consequent alteration in pI, while not necessarily in Mr [1–3].
For studying this effect, a computer-simulated map was gener-
ated (Fig. 5a), where a train of eight spots in the pI range 5–6.4
pH, with a constant �pI of 0.2 pH at a constant log Mr value
of 0.67 was superimposed to the original map containing 200
SCs (enlarged inset in Fig. 5a). The 2D-EACVF was computed
on the whole map (line 9 in Table 2) and the 2D-EACVF plot
reported in Fig. 5b. We observe that the 2D-EACVF exhibits a C2
symmetry (Eqs. (4) and (6)): correlations in positions (�x, �y)
are equal to those in (−�x, −�y), that means that both positive
and negative �pH shifts give the same 2D-EACVF values. In
Fig. 5b well-defined deterministic cones are evident along the pI
axis at values �pH 0.2, 0.4, 0.6 pH: they are related to the con-
stant interdistances repeated in the spot trains. This behaviour is
more clearly shown by the intersection of 2D-EACVF with the
pI separation axis: the inset in Fig. 5b reports the 2D-EACVF
plots computed on the same map with (upper red line) and with-
out (lower blue line) the spot train. A comparison between the
two lines shows that the 2D-EACVF peaks at 0.2, 0.4, 0.6 �pH
(upper red line) clearly identify the presence of the spot train
singling out this ordered pattern from the random complexity
of the map (lower blue line, from map without the spot train).
The difference between the two lines identifies the contribu-
tion of the two components to the complex separation: the blue
l
m
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dimension, detector system performance, pI range) on spot over-
lapping. These informations are useful to quantitatively estimate
the degree of error associated with identification and quantitation
of each protein and to set-up experimental conditions, which will
increase resolution and separation performance. For example, an
extraordinary improvement in spot purity is obtained if narrow
range strips are used, or if the sample is pre-fractionated, using
chromatography or electrophoresis, to reduce the initial sample
polydispersity.

The strength of the 2D-ACVF method lies in its ability to
simply display a comprehensive description of the whole map
since the 2D-EACVF plot retains, in a simplified form, infor-
mation on the quali/quantitative composition of the complex
mixture. In fact, the deterministic peaks in the 2DEACVF plot
are diagnostic for the presence of ordered spot sequences, which
can be related to specific chemical composition of the sample,
the height of the 2D-EACVF peaks provides information on
the repetitivity abundance, i.e., the number of repeated interdis-
tances and/or the intensity of the repeated spots. In particular,
the 2D-EACVF plot, as a fingerprint of the whole map, can be
helpful for protein expression profiling and for comparing maps
in order to determine qualitative (appearance or disappearance
of spots) and quantitative (intensity of those spots) differences
in protein expression.

These tools are general and can be also applied for under-
standing the system molecular complexity in the growing area
o
m

A

a
#
4
C

a

R

ine corresponds to the random separation pattern present in the
ap, the red line describes the order in the 2D map due to the

uperimposed spot train. It must be noted the high sensitivity of
he 2D-EACVF method in detecting order: in fact it is able to
etect the presence of only seven-fold repetitiveness hidden in
random pattern of 200 proteins.

. Concluding remarks

At present, increasing accuracy and precision are achieved
n complex 2D gel image acquisition and spot detection due
o the development of computer assisted analysis as well as in
rotein spot identification and quantification due to the advance-
ent of specific software programs. However, the complexity of

he plethora of data obtained requires proper signal processing
rocedures for a complete extraction of the whole analytical
nformation.

The mathematical–statistical methods here reviewed are
roved to be powerful tools for proteomics to study 2D-PAGE
aps of complex mixtures of proteins. Both methods allow one

o extract similar information on the sample complexity and
he separation performance and to single out ordered patterns
resent in spot positions. The availability of two independent
rocedures to compute the same separation parameters is a pow-
rful tool to check the reliability of the obtained results.

Moreover, the two procedures display different and com-
lementary properties so that each of them is the method of
hoice to obtain specific information on the 2D-PAGE maps.
he SMO procedure is an unique tool to quantitatively estimate

he degree of spot overlapping present in a map as well as to
redict the influence of different experimental conditions (strip
f multidimensional identification technologies, such as in the
ultidimensional separation science and technology.
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